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Phase velocity and phase diffusion in periodically driven discrete-state systems
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We develop a theory to calculate the effective phase diffusion coefficient and the mean phase velocity in
periodically driven stochastic models with two discrete states. This theory is applied to a dichotomically driven
Markovian two-state system. Explicit expressions for the mean phase velocity, the effective phase diffusion
coefficient, and the Péclet number are analytically calculated. The latter indicates as a measure of phase-
coherence forced synchronization of the stochastic system with respect to the periodic driving and exhibits a
“bona fide” resonance. In a second step, the theory is applied to a non-Markovian two-state system modeling
excitable systems. The results prove again stochastic synchronization to the periodic driving and are in good
agreement with simulations of a stochastic FitzHugh-Nagumo system.
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[. INTRODUCTION as to excitable systems which monotonously increases in
Stochastic resonance as a phenomenon of noise-enhandég€ [12-14. Its mean velocities and effective phase diffu-
order in periodically driven stochastic systems has attracteg O constant were used to quantify synchronization between
considerable interest up to nd@—4]. A common approach the output and the dnvm_g input. Likewise, as in stochz_istlc
to quantify this effect involves spectral-based measures sudfSonance, synchronization appears at an optimal choice of
as the spectral power amplification and the signal-to-noisd€ Neise intensity since the level of noise determines the
ratio. On the other hand, stochastic resonance can also (sgaracteristic times of the stochastic system. .
understood as a synchronization process between the inpyt As a result, one finds plateaus of the mean frequencies of
and the response of the systd®5]. This interpretation the output at values which correspond to the driving fre-

. . : . . . . quency or multiples of i{5,15-1§. These plateaus are ac-
achieves |mpo_rt<_’:1nce_espe0|ally i deall_ng with Ia_lrg_er amp“'gompgnied With?OW phage diffus?on coeffi(F:)ients indicating a
tudes of the drl_vmg signal. Then analytical descriptions hav%ynchronization on average. As a measure of synchroniza-
to go beyond linear-response theory.

| incial h introduced i tion, one uses the duration of locking epochs or a Péclet-
In general, two principal approaches were introduced i, mper which is the ratio between the phase velocity and

the past to describe the synchronization of a stochastic Sy$hase diffusion coefficierfl9-21.
tem by an external driving. The first one is basesd on the For pistable stochastic systems, a discrete state modeling
consideration of escape time densities to leave certain stat@gs been proven very successful in the g2&,23. It is
of the dynamical systerf6] and was investigated analyti- pased on a separation of time scales between the fast relax-
cally, numerically simulated, and experimentally verified, es-ation into the metastable states and the transition between
pecially for symmetric bistable situatiofg—10]. A periodic  these states, which happens on a slower time scale and build
driving modulates these densities and they exhibit maxima aip of a Markovian discrete dynami¢24].
times which correspond to time scales of the external driv- Also models of excitable behavip25,26 can be mapped
ing. The area under the peak in the residence time distribusn two- or three-state dynamif®7—-29. These discrete state
tion which corresponds to the driving frequency shows amodels still set up a renewal procg8€]. However, contrary
maximum at a finite frequency. Stochastic resonance basdd bistable systems, they include nonexponentially distrib-
on this measure was therefore considered as a “bona fideited waiting time densities and are thus non-Markovian.
resonancé?]. However, this maximum also persists without  These discrete state systems will be endowed with a dis-
driving, due to the definition which depends on the drivingcrete phase which is introduced in Sec. Il. As will be shown
frequency, and therefore the authors [@ disputed the in our paper, both the Markovian and the non-Markovian
“bona fide” resonance. model exhibit phase synchronization with respect to the pe-
The second approach goes back to Stratonovich, whdodic driving for optimal noise levels. We will quantify this
looked at synchronization of nonlinear oscillators by periodiceffect by the mean phase velocity, phase diffusion coeffi-
driving in the presence of noidd1]. For this purpose, one cient, and the Péclet number. A unique approach to calculate
adopts a phase to the nonlinear oscillators and defines statidiese quantities in driven renewal models with two states
tical properties of the stochastically behaving phase. If thewill be presented in Sec. Ill. This approach is based on an
mean phase velocity agrees with the frequency of the drivingnvelope description of the phakz0,31].
and at the same time the phase diffusion coefficient is small, Section IV applies the theory to bistable systems where
then there exist on average a fixed phase relation between tivarkovian rules were assumed for the transition between the
driving and the output of the system. discrete states. First results of this system with dichotomic
This picture was recently transfered to models of stochasperiodic inputs were derived earlier [19]. These results
tic resonance which are nonlinear but nonoscillating. It wasvere recently improved 32,33, which agrees with our
possible to prescribe a phase to overdamped bistable as wéithdings in the case of the Markovian dynamics. We report,
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in addition, that the Péclet number which we propose as a Next we endow this system with a phagé). Our goal is
measure of stochastic resonance exhibits a “bona fide” reste evaluate the mean phase velocity
nance.

Section V is devoted to a non-Markovian two-state sys- o= lim (¢(t) (6)
tem which models excitable behavior. Integral equations for tooe L
the phase velocity and phase diffusion coefficient have to be
numerically solved. Results of these computations show?
good quantitative agreement with numeric simulations of a — (2(t)) — ((1))?

stochastic periodically driven FitzHugh-Nagumo system. Deft = t“m ot

s well as the effective phase diffusion constant

()

These quantities are independent of the exact definition of

phase, as long as the phase increasesrwithin one cycle
Consider a periodically driven stochastic two-state systend —2— 1 of the system. For the sake of notational and com-

described by the probabilitiep(t)=[p,(t),p,(t)] to be in putational convenience, we consider a phase which increases

Il. TWO-STATE MODELS AND PHASE

state 1 or 2, respectively, at tinte by 27 each time the system enters state 1. Then the prob-
In general, these dynamics can be expressed in terms @pilities pc=[p1 k. p2] to be in state 1 or 2, respectively, and
the flux operatorsjiﬁi by to have the phaserk are governed by
p1=J¢ PO - 7 P01, (1) Pre= Tt Pial = AP, (8)
po= 7t Ap()] - p()], ) Posc= Tt “Ipd = 7P (9
or, in a vectorial notion, These equations are similar to Eg%) and(2), however the
' probability influx into state 1 for a given phaseri2 comes
p=M{p()] (3 now from states with the phasergk-1).

The mean phase as well as the mean-square phase are

with the master operator
P given in terms of the probabilitieg, by

M{[p]=[7 '[p]- 7 APl J p1- 7 Pl (4)

The linear flux operators, which express the probability flux (1)) = > 27k py (1) + Po(D)],
from statei to statej in terms of the occupation probabilities, k==

depend explicitly on time in a periodic way due to the
periodic driving with periodT =27/}, -

(BP0 = 2 A7y () + Poi(t)].

A=3d. ©
In the Markovian case, these operators are local in time, i.eThe instantaneous mean phase veloeif§) and instanta-
multiplication operators, neous mean phase diffusi@«(t) are then defined as
i—=irg(. =~ (t)D: d
T e = %(®)pi(t). w(t) = d_t<¢(t)>’ (10)

The well known two-state model for bistable systel2g],
which will be considered in more detail in Sec. 1V, is of this
type. In the non-Markovian case, the action of the flux op- De(t) = 12[<¢2(t)> —{(p(1))2]. (12)
erators 7, ) on the probabilitiesp; and p, is nonlocal in 2dt
time, i.e., the,~! are integral operators. One example OfAsymptoticaIIy, i.e., for the initial timeto— —, the phase
this type is the discrete state mo<_jel for excitable systemazzwk will undergo a diffusional motion32] with periodi-
[28,29, whose flux operators are given by cally varying effective phase velocity(t) and effective dif-

- t fusion coefficienDg(t). In this asymptotic regime, the mean

v P =f drw(t = 7) (1) pa(7), phase velocity6) and effective phase diffusion constaj

to can be expressed as the time-average over one period of the
external driving of the time-dependent phase velocity and

TP = nO)pat), diffusion constant,
wherew(7) is the waiting time distribution in state 1, which 1 (T — 1 (7
is not necessarily exponentially distributed ap(d) is again W=z . dte(t) andDeg = ), dtDer(t). (12

a time-dependent excitation rate from state 2 to 1. Note that
in this case the flux operators depend explicitly on the initialAlthough the phase velocity and effective phase diffusion
time ty which breaks its periodicity5). However, in the constant(10) and(11) have a periodic asymptotic behavior,
asymptotic case,— — this periodicity is restored. This the probabilitiesp;  and p,, on which their calculation is
model will be considered in Sec. V. based have no asymptotic solutions. In the following, we
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derive equations for the asymptotic phase velocity and effec- @ t

tive phase diffusion constant which only rely on asymptotic ¢ (t) =f dra(7),
(cyclostationary solutions of some equations and are there- v

fore easier to deal with.

t t
lll. GENERAL THEORY c2(t) = -f drDeg(7) + w(t)f drt- Do(7).
t’ t’

Our aim is to relate the asymptotic phase velocity and
effective phase diffusion constait2) to the microscopic
dynamics(8) and(9). To this end, we introduce a continuous
phase distributionP(¢,t) as the envelope of the discrete
phase distributiom, , and p, [20,31] by defining its values
at integer multiples of 2 as

q© in Eq. (17) shows the same dynamics gsin the
two-state system without pha&b and(2), which one would
also expect as this term corresponds to an equipartition of
phasesP(¢,t)=const in the expansioiil5). The higher-
order termsy™ are corrections which emerge due to the fact
that we are considering a nonequipartition of phases result-
P(p=27K,t) := pyi(t) + pax(t). (13)  ing in drift and diffusion.

Interestingly, if the action of the flux operators on the
probabilities is local in time, i.e., in the Markovian case, the
terms containing the!” are Zero, as(')(t):o, and therefore

The diffusional motion of the phasg¢ requires its distribu-
tion P(¢) to obey the Fokker-Planck equation i
d d d the dynamics of thg® considerablytsimplifies.
P Y —o(t)+ Deff(t)zﬁ Pleb. (14 By summing up both components of the vectorial Egs.
(18) and(19), using the normalization conditiqii6) and the
To establish the relation betweew(t) and D4(t) and the  fact that(M,);+(M,),=0, we arrive at

microscopic dynamic$8) and (9), and we expang, , and

P2 according to o(t) =277, a1, (20)
LPOEDS q?“kt)(%n P(pD|g=znta 1=1,2. (15 Der(t) = 2777 =g + (7= cM)q (v
n=0

= mo(t) + 2272 [-q¥ -cPq@](1). (21
This expansion describes how the probability to be in state . — .
or 2 for a given phase & at timet,py (t) and p, (), re- ]l'he asymptotic mean phase velocityand the asymptotic

spectively, is related to the total probability to have a phaséffective phase diffusion constaile can then be deter-
27k, P(27k,t), and its gradients. mined from the asymptotid¢cyclostationary solutions of

The total probabilityp; (t) +p,(t) to have a phasesk Egs. (170 and (18). Therefore, the calculation of the

neglecting the internal state 1 or 2 is related to the continu@Symptotic effective diffusion constant is reduced to the so-

ous phase distribution by the defining equatia®), which lution of a cyclostationary problem, which in general is sim-
in turn implies pler than solving the whole nonstationary problé& and

(9) with some initial conditions and then taking the

a2+ =1, (16)  asymptotic limit in Eq.(7).
In the following, the mean phase velocity and effective
q<1”>(t) + q(Z”)(t) =0 forn=1. phase diffusion constant will be considered for two different

) . . models, namely a Markovian modg22], which approxi-
Inserting the ansatfl5) into the master equation®) and mates bistable systems and a non-Markovian méae],

(9), using the Fokker-Planck equatiet) for the phase, and \yhich serves as an approximate description for excitable sys-
considering the coefficients of the different derivativesiams For the dichotomically driven Markovian case, the

&l (_9¢”P(¢,t)_eventuzill)y Iez(irgls },(F)Cf' Appendix A the fol-  ean phase velocity and effective phase diffusion constant
lowing equations foq"=[q;",q;, |: can be explicitly calculated, while for the non-Markovian
4@ =M Jq] (17) case solutions can only be obtained numerically.

=M [q],
g =MLq¥ +c"q ] - 273[q ] + w()q?, (18) IV. A MARKOVIAN TWO-STATE MODEL

We consider now a Markovian two-state system with pe-

§(2) = @ 4+ WD + 240
q Mda™ +crq 7 +aq ] riodically modulated rateg,(t) and y4(t). Its flux operators

-2 qY + (¢’ - Mg VT + w()g® = Der()q©. J+2 and 721 are given by
(19 TEpI(1) = mOpy(t) and 72 p](H) = ,(Dps(t).
The operator In this Markovian case, the equations, which govern the evo-
o Vaatl lution of q@(t), greatly simplify due to the fact that"(t)
Jil1= 0 =0. Equationg20) and (21) reduce to
accounts for the influx into state 1 and we introduced o(t) = 2my,()g2 (1)
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Der(t) = 22 y,(D)gS (1) = 2my,(DG5 (1).
(0) (1)

The equations fog,”(t) andq,"(t) are given by
a2(1) = 1 (Oa (V) ~ y2(H)a (O, (22
65"() = y(0a(1) ~ 720" (1) + w()a (1),
(23

Equationg22) and(23) can be readily solved by the method

of variation of constants, using”(t)=1-q’(t) and q\"(t)
1

—q.

eventually read

T
dry,(t— nexd—s(n1)]

1-exg-s(T,1)] '

gt = (24)

.
dro(t - DX (t - Dexd - s(rt)]

0
1-exg-s(T,1t)] '

where s(7,1):= [t__d7'[y,(7') + y5(7')]. Note thats(T,t) no
longer depends oh
For a dichotomic symmetric driving with period

=27l w,
. 1
r, ifte [nT,<n+E>T>

r, ifte [<n+%>T,(n+ 1)T)

gt = (25)

n(t) =

and vice versa fory,(t), Egs.(24) and (25 can be readily

)(t) [cf. Eq. (16)]. The asymptotic periodic solutions

PHYSICAL REVIEW E71, 031112(2005

Without signal, i.e.,a=0, Eq. (27) reduces toseﬁzmo,
which agrees with the result [rSO], Deff=(277)2/2((t2)—(t>2)/<t>3'

Next we consider the small and large noise limits of the
phase velocityw and phase diffusion constabt, for the
case of Arrhenius rates;,=roexg—-(AUxA)/D]. In this
case,a=tant(A/D).

If for a fixed driving frequency the noise level is suffi-
ciently small such thaR<1, Egs.(26) and (27) reduce to

52 (,()0+ aQR= %T(r1+ rz) = %Trz,

— 1 3 3
De = Wwo(i + Ea) + ﬂ'aQR(— 1 +§a>

=—(r{+ry) = —ry,,
4(1 2) 42

where in the last step we used the fact thatlominatesr;
for small noise levels. Therefore, at the level of phase veloc-
ity and phase diffusion, the process behaves like a process
without driving whose rates are both equalrté?2.

On the other hand, if the noise level is large and the driv-
ing frequency is small comparedtgsuch thaR>1, we get

s + (ry=ry)?
ry+r; (ry+r1y)%

= wo+ a) =27

Degt = 7—27(1)0(1 +a)+7maQl(-1+a)

(ry=ry)?
(ry+rp)*

2, .2
rarp(ri+ry)

(rp+1y)°

evaluated leading after some cumbersome algebra to the . i
mean phase velocity and effective phase diffusion constant! he first terms in these expressions correspond to a process

= wy+ af) tanhR (26)

and
— 1 1 >
Dt = g 5+a 5+cosh R

1
+ WaQ[— 1 +a<§ cosh?R+ 1)] tanhR, (27)

without driving with one rate equal tq and the other equal
to r,, while the second terms are corrections which vanish
for vanishing driving frequency.

Between these regions, we have a competing behavior. If
for a fixed driving amplitude?, the noise strengtb is suf-
ficiently small, such thate=1 and wy=0, and simulta-
neously, for a fixed driving frequenc§, D is sufficiently
large such thaR>1, i.e., tanfR=1, we have

o=,

where we have introduced the mean phase velocity without

driving,
2T

wo:z —l 1

o n
a quantifier for the driving strength,
_ (ri=rp?
(ry+1)?’

Deﬁzo,

i.e., frequency and phase locking occur.

Having calculated the effective diffusion coefficient and
the mean phase velocity, we can evaluate the Péclet number
o=
Pe:= 222, (28)

Deff

and some ratio between inner time scale and driving freWhich is a measure of the phase coherence.

quency,

m(ry+ry)
R=———F—.
2Q

In Fig. 1, the theoretical resul{26)—(28), are compared
to simulations of the driven two-state system. To compute
these results, we have modified an algorithm presented in
[34] taking into account that the transition rates are piece-
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FIG. 1. Mean phase velocity (top), effective phase diffusion
constantDg4 (middle), and Péclet number Reottom) of the Mar-
kovian model for different values of the driving amplitude. Symbols
are simulation data of the two-state system, lines according to Eqs
(26)—(28), respectively. Other parameterg=1, AU=0.25, and(}
=0.00%r. The deviation between theory and simulations in the Pé-

0.001

0.0008

clet number for low noise intensities is due to limited simulation 1o 00006

time.

wise constant in time due to the dichotomic driving. Let us
assume we start at timdn state 1 and the input defines the
rate to have the valug. Then we draw a random number
according to the corresponding waiting time distribution
er(T):rl exp(-ry7). If t+7is smaller than the timg, of the
next switching of the input, we set the running timettor
and perform the transition to the second state of the system
This state 2 will be left with rate, and we proceed accord-
ingly (see Fig.2. On the contrary, if during the interval
[t,t+7] a switching of the input occurs, we set the running
time equal to the switching timg, but remain in state 1.
After switching of the input, the rate for leaving state 1 is
now r, and we proceed by drawing a new waiting time ac-
cording to the new densitwrz(r):rz exp(—r,7).

noise strength, indicating stochastic resonafég. 3).For a

0.0004

0.0002

0

100

Pe

0.1

10

-6

FIG. 3. Mean phase velocity (top, insel, effective phase dif-
The Péclet number shows a maximum as a function ofysjon constanDg¢ (top), and Péclet number Pgottom) of the

non-Markovian model for different values of the driving frequency

strong driving, it varies over several orders of magnitudeq. Symbols are simulation data of the two-state system, lines ac-
with varying noise strengt®. Interestingly, the Péclet num- cording to numerical evaluation of the theory. Other parameters:
ber shows also a nonmonotonic behavior as a function of=2800,r,=0.0044,AU=5.6X 1075, andA=5.0x 10°®.
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driving frequency for a fixed noise level, i.e., using this num- *
ber as a measure of the quality of the response to the external P = f d7z(7) y(t = DP k-1t = 7). (36)
signal, we discover a “bona fide" resonance. 0

We also have to take care of the flux operafr 2 which in
the asymptotic case is given bgf. Eq. (33)]

In this section, we consider the phase velocity and diffu- "
sion of a non-Markovian modg¢R9]. This two-state model 1270t :f drw t— t— 37
mimics the dynamics of an excitable system by dividing it TR 0 (DAL= Pt~ 7). S

into an excitation step and the evolution along the excitation ) ] o
loop. Its dynamics is given by In the following, we assume a fixed waiting tinfeon the

. excitation loop, i.e.w(7)=8(T-7) and z(7)=6(T—- 7). Such
o B B an assumption is justified in the low noise limit for, e.g.,
P1(D) = AOP2(D) fto dmw(t = 1) Y 7)Pa(7), (29 FitzHugh-Nagumo model&f. Fig. 6). In this case, Eq(37)

V. EXCITABLE SYSTEMS

simplifies to
t 1—2) — — —
pa) == H0P) + | dmw(t=AAp(m), (30 FRIO = A= Dpt= D). 9
to Then, according to Eq$20) and(21), the time-dependent
with initial conditions phase velocityw(t) and effective phase diffusion constant
Defit) are given by
P1(to) =0 andp,(ty) = 1. (31 .
State 2 represents the rest state, in which we start at initial o(t) =2m/1a; V), (39)
time ty,. From there, the system is excited due to noise and @ ©
the external periodic subthreshold signal, leading a rate pro- Der(t) = = 2my(1)3” (1) + 2 /(D) (1), (40)
cess with ratey(t), which depends periodically on time. This \hich are the same expressions as in the Markovian case, as
Markovian excitation step is described by the flux operator72~* is the same. However, the equations
ﬁﬂl[p](t) = AOP,(1). (32) governing theq® are different. Following the same proce-

dure we used to treat Eq®) and(9), Eq.(36), together with
State 1 accounts for the motion on the excitation loop omormalization, the conditiofil6) leads to
which the system spends a time distributed according to the T
waiting time distributionw(7), which is assumed not to de- (O — — nO)s _
pend on the weak external driving. The flux from state 1 1-e = fo drt= ez (t-7) “D
back to state 2 is then expressed in terms of the flux from
state 2 to state 1 at prior timesbetweent, to t y(7)p,(7), T
which renders the description non-Markovian, leading to the- g3 (t) =f dry(t - Dot - 7)
flux operator 0

t T T
Tl = f drw(t = )Y D)pa(7). (33) + fo dry(t - neg’(t- r)( J dr'o(t-1') - 277).
to

0

Note that this operator depends explicitly on the initial time (42)

to. _ o o The periodic solutions of Eq$41) and(42) can be numeri-
To calculate the asymptotic periodic solution, it will be cally obtained in Fourier space using a linear solver like
useful to first formally integrate Eq$29) and (30), taking | apack.

into account the initial condition31) and then taking the To investigate the role of noise on the synchronization in

initial time to to —e. The resulting equations are an excitable system, we choose an Arrhenius-type excitation
o rate for the transition from the rest state 2 onto the excitation
py(t) = f d7z(n) y(t = Dp,(t— 7, (34) loop 1. We further assume that the external driving acts as a

0 modulation of the potential barrier. Again we consider a di-

chotomic periodic driving, i.e., the excitation rajét) peri-
” odically switches between the two values=ryexg—(AU
pot) =1 ‘f d7z(7) y(t = 7)po(t - 7), (35 -A)/D] andr,=r,exd—(AU+A)/D].
The resulting phase velocity, effective phase diffusion,
wherez(7)=1-[Jd7’'w(7') is the probability to spend a time and Péclet number as a function of noise streripttare
longer thanr on the excitation loop. By differentiating these shown in Fig. 3. As in the case of bistable systems, we ob-
equations with respect t one recovers the original Egs. serve frequency and phase locking, however there exist pre-

0

(29) and(30) in the limit ty— —oo [35]. ferred driving frequencies for which high synchronization is
If we take into account the phase, E@4) has to be achieved and other frequencies which show no synchroniza-
replaced by tion at all.
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The Péclet number shows a local maximum at a finite ~ 0.002
noise strength. Contrary to the bistable situation, however,
the phase diffusion constant decreases again and the Pécl
number therefore increases for large noise levels. This be
havior is originated in the fixed tim€ on the excitation loop.
Taking into account the high rate and therefore small waiting'® ; 514
time and variance of the excitation step for high noise levels,
this leads to a low variance of the spiking, which implies a  ¢.0012
low diffusion of the phase. We mention that this low phase
diffusion does not imply synchronization since the frequen-  o0.001
cies are not locked. Also we note that in real excitable sys-
tems the behavior differs. For higher noise levels, the time ¢ o007
spent on the excitation loop will have a variance in these
systems which yields an increasing phase diffusion with
growing noise. 0.0005

As seen in Fig. 3, the synchronization behavior strongly J 0.0004
depends on the driving frequency. To further analyze this 003
effect, we have plotted in Fig. 4 the mean phase velocity,
phase diffusion coefficient, and the Péclet number as a func
tion of the driving frequency. They show a complex se-  0.0001
qguence of different locking regions between the driving and 0
the system’s responsk86,37), represented by shaded re-
gions. In these locking regions, the effective phase diffusion
is small(see Fig. 5. We mention that the maximal frequency
of the excitable system i®,,,=27/T, whereT is the time
on the excitation loop. There cannot be 1:1 synchronization 10
for Q> wnae

Let us for a moment assume the extreme case where on
excitation rate 4 is infinity and the other, is zero. Then the .
system remains in the rest state as long as the input cause 1104 103 102
the vanishing excitation rate. After the input changes, the Q
system immediately starts with the excitation loop, where it o
stays at timeT. For a 1:1 locking, this tim@ must be larger FIG. 4. Mean phase velocity (top), effective phase diffusion
than half the period but smaller than the full periodl/®) of ~ constantD« (middle), and Péclet number Réottom of the non-
the driving. Otherwise, if the duration of the excitation loop Markovian model as a function of driving frequenéy for D
would be smaller than half the period, the system returns t&0-000 01. The selected shaded regions are a guide for the eye to
the rest state where it immediately starts a new excitation. A§how that regions of frequency synchronization are accompanied
a consequence, flocking, where the output frequencyns Wl,th a small effective phase diffusion and therefore with a high
times higher than the input frequency, occurs if the period of €¢let number. Other parametef=2800, ro=0.0044, AU=5.6
the driving is betweerin-1/2)T andnT. X107 andA=5.0x10".

The opposite case where a fast input locks a slow output
occurs if multiple periods of the input fit into the excitation Hence, we find synchronization in a finite window of noise
time. During the excitation, the system does not respond tdtensities where the two activation times enclose the fime
the changes of the input. If the input has the phase with lon@n the excitation loop,
waiting time after the system has completed the excitation
loop, it has to wait until the input changes to the phase with

0.0018

0.0016

0.0006

0.0002

100

Pe

1 1
the small waiting time, leading to am:1 synchronization —<T<—. (43)
wheren is the number of signal periods which fit into the ! r2

excitation timeT.

However, if the system finds the high excitation rate afte'WWe point out that this latter time plays the essential role
excursion, it immediately starts a new excitation loop andwithin the synchronization process, i.e., this time scale and
repeats these until it will find the phase with long waiting the period of the external drive have to be tuned appropri-
times. This yields am:m frequency locking withn>m. ately to get phase synchronization. Noise as well as the am-
Note that there are ne:m locking modes witm<m except  plitude of driving define the two excitation rates and have to
the 1:m modes described above. be chosen such that E(3) is optimally fulfilled, i.e., that

Realistic noise-dependent time scales will weaken the exthe input acts as much as possible as an on-off switch on the
treme behavior of the situation considered above. There amxcitation process. A deviation from this extremal behavior
two competing effects: increasing the noise increasess leads to a narrowing of the driving frequency windows ame-
well asr, while decreasing the noise increases the ratio benable to frequency locking and a shift of these windows to
tweenr,; and r, and therefore the effect of the driving. lower frequencies.
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10
0.0014

0.0012
0.001
0.0008

o 10%
0.0006

0.0004

0.0002

FIG. 5. Effective phase diffusion constably of the non- .

Markovian model, as a function of driving frequenfyand noise 0.0002 - + 7
level D. The black lines show regions of frequency lockifly }U{AAA

-6 <nw<(l+e)Q), €=0.01 with (from left to right n 0104 1(;.3
=3,2,1,§. These regions of frequency locking coincide with low ®

phase diffusion. Other parameters as in Figs. 3 and 4.

FIG. 7. Comparison between theory and FHN system for mean

Inequality (43) allows for an estimation of noise levels, phase velocityw (top) and effective phase diffusion constaDy
for which one can expect synchronization. If, in particular, (bottom as a function of driving frequency. Other parameters, see
we specify this inequality by X{<T/4 and 1f,>4T, the text
parameters used in Fig. 5 lead to a noise range fidom5
X10°® to D=3x 10 which coincides with the range of consider a strong timescale separatier0.001 as well as a
noise levels for which phase synchronization is actually obsmall noise leveD=107°. The phase of the system is defined

seryed. . to increase by 2 each time a spike is generated. From simu-
_Finally, we compare the theory to a dynamical systemiations of the interspike interval distributidisee Fig. 6 for
with excitable dynamics, namely the FHN moda8,39, constant signal &, we find the corresponding parameters of
C o3 [ the two-state model to b&=2620, r;~0.0087, andr,
X=X=X y+ \‘2D§(t)- ~8.3X 10—8

The results for the phase velocity and effective phase

y=elx+ao-ay =St (44 diffusion constanD for the FHN systeninumerical simu-
This system is driven by a dichotomic periodic sigsét lation of Eqs.(44)] and the theory39) and(40) are shown in
with values #, where A=0.015. Settinga;=0.405 anda; Fig. 7. They show a good qualitative agreement over a large
=0.5, the system is in the excitable regime for both values ofange of driving frequencies. The deviation for larger driving
the signal, i.e., the signal is a subthreshold signal. We furthefrequencies is due to the fact that, in contrast to the assump-
tions of our two-state model, the tinfespent on the excita-
tion loop depends if only weakly on the driving.

10000 T T

VI. CONCLUSIONS
1000 £

We have derived a general theory to calculate the
asymptotic effective phase velocity and phase diffusion con-
1 stant in periodically driven two-state systems. This theory
was applied to two different two-state models, one with Mar-
kovian dynamics representing bistable systems and the other
E with non-Markovian dynamics, modeling excitability.

In the Markovian case, analytical results have been calcu-
lated for dichotomic driving with arbitrary driving ampli-
tudes. We found phase synchronization for optimal noise in-
tensities if Arrhenius-type rates for the transitions between
the states are assumed. The mean frequency of the system is

FIG. 6. Interspike interval distribution of the FHN systé#) locked to the frequency of the external stimulus and the ef-
with constant signa$(t)=0.04 for a low noise leveD=10"° and fective phase diffusion coefficient becomes vanishingly
strong time scale separati@s0.001. Other parameters, see text. small. The Péclet number, however, shows a maximum not

w(7)
2

10 |

1
2000 2200 2400 2600 2800 3000 3200 3400
T
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only as a function of noise strength but also as a function of * (= DM Le(t) | P
driving frequency, i.e., a “bona fide” resonance. Frequency +A¢>, ————— |—P(¢,t) + O(3),

locking occurs as long as the driving frequency is smaller m=l R
than the maximal transition rates which are attained for large ) , o
noise. where O(3) denotes third or higher derivatives @(¢,t)

In the non-Markovian case, the phase velocity, phase difwith respect to¢. The sums containing the (_jerivatives of
fusion coefficient, and Péclet number also prove phase syrf2(t) andDe(t) can be further evaluated, leading to
chronization between input and output. However, the picture . .
differs from the previous case showing a sequence of D (= DM I Le(t) _ 1 M) (7

/ /\ym
frequency-locking modes. These different regions of locking < mi sm™1 ~ =m0 gm d7' (= 7)
are accompanied with low phase diffusion. The main condi-
tions for locking are expressed by relations between the driv- _ T ,
ing frequency() and the timeT spend on the excitation loop. —J, dr'w(t-7)

The noise-dependent and periodically modulated transition
rates from the rest to the excited state act as a switch for thgng analogously
spiking. 1n locking, i.e., a slow input and fast output, oc-
curs for a certain window of noise intensities if, in a first

— m m-1 T
approximation, the driving frequency is betweenr/P(n > (—?&m_ef(t):—f d7' Delt — 7)
—-1/2)T] and 27/(nT), respectively. For the opposite case of m1 M a 0
fast input and slow output, we find @&:but alsom:n, m
<n frequency locking. The theoretical results for the non-and
Markovian model of excitable systems agree well with simu- - S .
lations of a FitzHugh-Nagumo system. D (=7" I"w(t) _ A7 P ot — 7
mm-2! a2 - 7Tolt-7).
m=2 ' 0
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APPENDIX A Plp-Ap,t— 1) =P(pt) +[cP(t- 1) - A¢]£§7>(¢,t)

Our aim is to express the phase distributiBtp—A¢,t 1
-7) in terms of P(¢,t) and its derivatives with respect ti + E(AdJ)Z - AgpcP(t- 1) +c?(t- 1)

M dd"P(¢p,t). To this end, we start by expanding(¢
2

-A¢,t—17) in a Taylor series aroung andt, X&%ZP(QS,U +0(3),
e 1 [
P("s_A"s’t_T):EEOM(M) where
am t
X(ﬁ)P(dﬁ)(_ Ap)"(= 7)™, Cgl)(t’) = ft’ dro(7),
To process the time derivatives, we use the Fokker-Planck
equation(14) t t
5 5 ; () =~ f dDei(7) + w(t) | dr(t= D (7).
= e v t/ t’
PGl 8d>( w(t)+Deﬁ(t)a¢)P(¢,t),

Next we insert our ansaiadb5)
taking care of the explicit time dependence ®ft) and

Desi(t), which leads to N

Pt =2 aV () — P(,1)] p=2k

P(p—Ap,t— 1) =P(,1) n=0 d¢
B [A¢+ % (-n:)ma“;t::it) ] %&Pw,t) into the dynamical equation®) and (9),
m=1 M ) . .
. Paj =T Pkl = Tt Apid, (A1)
+ EA¢2 + E ﬂm
2 - m gt A2, 7 2l
m Pew =t TP =Tt TPl (A2)
o D" IR . . _
+o(t) D — Using again the Fokker-Planck equatiti¥), the left-hand
m2 M(m=2)! 4t side of Eqs(Al) and(A2) is given by
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+1 n+2
i g
_pk(t) E (dt )(t)> (?d)n +k7{ J[ ]<0¢n+1 §¢n+2>73(¢ t)
o 2 + AP P(g ) + O+ 3,
+ nEOq ® a¢n+1< @(t) + Deg(t) ) P(,). a¢
The different terms on the right-hand side of Eg&1) and J7pd = E J7[q ”)] nP(¢ t)
(A2) read i
jiﬂj[pk_ﬂ + jﬂ[c(l)q(n)]aqsnﬂp(q; t)
. . ar‘l+l
=2 57 i35 G g + 7 q")- ¢n+279(¢ H+0(M+3).
s02 2 )7’(05 ) Equating now the coefficients @®(¢,t), (9/3)P(p,1)
dPp"? and (21 9¢?)P(¢,1) finally leads to Eqs(17)—~(19).
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