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We develop a theory to calculate the effective phase diffusion coefficient and the mean phase velocity in
periodically driven stochastic models with two discrete states. This theory is applied to a dichotomically driven
Markovian two-state system. Explicit expressions for the mean phase velocity, the effective phase diffusion
coefficient, and the Péclet number are analytically calculated. The latter indicates as a measure of phase-
coherence forced synchronization of the stochastic system with respect to the periodic driving and exhibits a
“bona fide” resonance. In a second step, the theory is applied to a non-Markovian two-state system modeling
excitable systems. The results prove again stochastic synchronization to the periodic driving and are in good
agreement with simulations of a stochastic FitzHugh-Nagumo system.
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I. INTRODUCTION

Stochastic resonance as a phenomenon of noise-enhanced
order in periodically driven stochastic systems has attracted
considerable interest up to nowf1–4g. A common approach
to quantify this effect involves spectral-based measures such
as the spectral power amplification and the signal-to-noise
ratio. On the other hand, stochastic resonance can also be
understood as a synchronization process between the input
and the response of the systemf3,5g. This interpretation
achieves importance especially if dealing with larger ampli-
tudes of the driving signal. Then analytical descriptions have
to go beyond linear-response theory.

In general, two principal approaches were introduced in
the past to describe the synchronization of a stochastic sys-
tem by an external driving. The first one is basesd on the
consideration of escape time densities to leave certain states
of the dynamical systemf6g and was investigated analyti-
cally, numerically simulated, and experimentally verified, es-
pecially for symmetric bistable situationsf7–10g. A periodic
driving modulates these densities and they exhibit maxima at
times which correspond to time scales of the external driv-
ing. The area under the peak in the residence time distribu-
tion which corresponds to the driving frequency shows a
maximum at a finite frequency. Stochastic resonance based
on this measure was therefore considered as a “bona fide”
resonancef7g. However, this maximum also persists without
driving, due to the definition which depends on the driving
frequency, and therefore the authors off8g disputed the
“bona fide” resonance.

The second approach goes back to Stratonovich, who
looked at synchronization of nonlinear oscillators by periodic
driving in the presence of noisef11g. For this purpose, one
adopts a phase to the nonlinear oscillators and defines statis-
tical properties of the stochastically behaving phase. If the
mean phase velocity agrees with the frequency of the driving
and at the same time the phase diffusion coefficient is small,
then there exist on average a fixed phase relation between the
driving and the output of the system.

This picture was recently transfered to models of stochas-
tic resonance which are nonlinear but nonoscillating. It was
possible to prescribe a phase to overdamped bistable as well

as to excitable systems which monotonously increases in
time f12–14g. Its mean velocities and effective phase diffu-
sion constant were used to quantify synchronization between
the output and the driving input. Likewise, as in stochastic
resonance, synchronization appears at an optimal choice of
the noise intensity since the level of noise determines the
characteristic times of the stochastic system.

As a result, one finds plateaus of the mean frequencies of
the output at values which correspond to the driving fre-
quency or multiples of itf5,15–18g. These plateaus are ac-
companied with low phase diffusion coefficients indicating a
synchronization on average. As a measure of synchroniza-
tion, one uses the duration of locking epochs or a Péclet-
number which is the ratio between the phase velocity and
phase diffusion coefficientf19–21g.

For bistable stochastic systems, a discrete state modeling
has been proven very successful in the pastf22,23g. It is
based on a separation of time scales between the fast relax-
ation into the metastable states and the transition between
these states, which happens on a slower time scale and build
up of a Markovian discrete dynamicsf24g.

Also models of excitable behaviorf25,26g can be mapped
on two- or three-state dynamicsf27–29g. These discrete state
models still set up a renewal processf30g. However, contrary
to bistable systems, they include nonexponentially distrib-
uted waiting time densities and are thus non-Markovian.

These discrete state systems will be endowed with a dis-
crete phase which is introduced in Sec. II. As will be shown
in our paper, both the Markovian and the non-Markovian
model exhibit phase synchronization with respect to the pe-
riodic driving for optimal noise levels. We will quantify this
effect by the mean phase velocity, phase diffusion coeffi-
cient, and the Péclet number. A unique approach to calculate
these quantities in driven renewal models with two states
will be presented in Sec. III. This approach is based on an
envelope description of the phasef20,31g.

Section IV applies the theory to bistable systems where
Markovian rules were assumed for the transition between the
discrete states. First results of this system with dichotomic
periodic inputs were derived earlier inf19g. These results
were recently improved inf32,33g, which agrees with our
findings in the case of the Markovian dynamics. We report,
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in addition, that the Péclet number which we propose as a
measure of stochastic resonance exhibits a “bona fide” reso-
nance.

Section V is devoted to a non-Markovian two-state sys-
tem which models excitable behavior. Integral equations for
the phase velocity and phase diffusion coefficient have to be
numerically solved. Results of these computations show
good quantitative agreement with numeric simulations of a
stochastic periodically driven FitzHugh-Nagumo system.

II. TWO-STATE MODELS AND PHASE

Consider a periodically driven stochastic two-state system
described by the probabilitiespstd=fp1std ,p2stdg to be in
state 1 or 2, respectively, at timet.

In general, these dynamics can be expressed in terms of
the flux operatorsJt

i→ j by

ṗ1 = Jt
2→1fps·dg − Jt

1→2fps·dg, s1d

ṗ2 = Jt
1→2fps·dg − Jt

2→1fps·dg, s2d

or, in a vectorial notion,

ṗ = M tfps·dg s3d

with the master operator

M tfpg = fJt
2→1fpg − Jt

1→2fpg, Jt
1→2fpg − Jt

2→1fpgg. s4d

The linear flux operators, which express the probability flux
from statei to statej in terms of the occupation probabilities,
depend explicitly on timet in a periodic way due to the
periodic driving with periodT=2p /V,

Jt
i→ j = Jt+T

i→ j . s5d

In the Markovian case, these operators are local in time, i.e.,
multiplication operators,

Jt
i→ jfps·dgstd = gistdpistd.

The well known two-state model for bistable systemsf22g,
which will be considered in more detail in Sec. IV, is of this
type. In the non-Markovian case, the action of the flux op-
eratorsJt

i→ j on the probabilitiesp1 and p2 is nonlocal in
time, i.e., theJt

i→ j are integral operators. One example of
this type is the discrete state model for excitable systems
f28,29g, whose flux operators are given by

Jt
1→2fps·dgstd =E

t0

t

dtwst − tdgstdp2std,

Jt
2→1fps·dgstd = gstdp2std,

wherewstd is the waiting time distribution in state 1, which
is not necessarily exponentially distributed andgstd is again
a time-dependent excitation rate from state 2 to 1. Note that
in this case the flux operators depend explicitly on the initial
time t0 which breaks its periodicitys5d. However, in the
asymptotic caset0→−` this periodicity is restored. This
model will be considered in Sec. V.

Next we endow this system with a phasefstd. Our goal is
to evaluate the mean phase velocity

v̄ ª lim
t→`

kfstdl
t

s6d

as well as the effective phase diffusion constant

D̄eff ª lim
t→`

kf2stdl − kfstdl2

2t
. s7d

These quantities are independent of the exact definition of
phase, as long as the phase increases by 2p within one cycle
1→2→1 of the system. For the sake of notational and com-
putational convenience, we consider a phase which increases
by 2p each time the system enters state 1. Then the prob-
abilitiespk=fp1,k,p2,kg to be in state 1 or 2, respectively, and
to have the phase 2pk are governed by

ṗ1,k = Jt
2→1fpk−1g − Jt

1→2fpkg, s8d

ṗ2,k = Jt
1→2fpkg − Jt

2→1fpkg. s9d

These equations are similar to Eqs.s1d ands2d, however the
probability influx into state 1 for a given phase 2pk comes
now from states with the phase 2psk−1d.

The mean phase as well as the mean-square phase are
given in terms of the probabilitiespk by

kfstdl = o
k=−`

`

2pkfp1,kstd + p2,kstdg,

kf2stdl = o
k=−`

`

4p2k2fp1,kstd + p2,kstdg.

The instantaneous mean phase velocityvstd and instanta-
neous mean phase diffusionDeffstd are then defined as

vstd =
d

dt
kfstdl, s10d

Deffstd =
1

2

d

dt
fkf2stdl − kfstdl2g. s11d

Asymptotically, i.e., for the initial timet0→−`, the phase
f=2pk will undergo a diffusional motionf32g with periodi-
cally varying effective phase velocityvstd and effective dif-
fusion coefficientDeffstd. In this asymptotic regime, the mean
phase velocitys6d and effective phase diffusion constants7d
can be expressed as the time-average over one period of the
external driving of the time-dependent phase velocity and
diffusion constant,

v̄ =
1

T
E

0

T

dtvstd andD̄eff =
1

T
E

0

T

dtDeffstd. s12d

Although the phase velocity and effective phase diffusion
constants10d and s11d have a periodic asymptotic behavior,
the probabilitiesp1,k and p2,k on which their calculation is
based have no asymptotic solutions. In the following, we
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derive equations for the asymptotic phase velocity and effec-
tive phase diffusion constant which only rely on asymptotic
scyclostationaryd solutions of some equations and are there-
fore easier to deal with.

III. GENERAL THEORY

Our aim is to relate the asymptotic phase velocity and
effective phase diffusion constants12d to the microscopic
dynamicss8d ands9d. To this end, we introduce a continuous
phase distributionPsf ,td as the envelope of the discrete
phase distributionp1,k andp2,k f20,31g by defining its values
at integer multiples of 2p as

Psf = 2pk,td ª p1,kstd + p2,kstd. s13d

The diffusional motion of the phasef requires its distribu-
tion Psfd to obey the Fokker-Planck equation

]

]t
Psf,td =

]

]f
S− vstd + Deffstd

]

]f
DPsf,td. s14d

To establish the relation betweenvstd and Deffstd and the
microscopic dynamicss8d and s9d, and we expandp1,k and
p2,k according to

pi,kstd = o
n=0

`

qi
sndstd

]n

]fnuPsf,tduf=2pk, i = 1,2. s15d

This expansion describes how the probability to be in state 1
or 2 for a given phase 2pk at time t ,p1,kstd and p2,kstd, re-
spectively, is related to the total probability to have a phase
2pk, Ps2pk,td, and its gradients.

The total probabilityp1,kstd+p2,kstd to have a phase 2pk
neglecting the internal state 1 or 2 is related to the continu-
ous phase distribution by the defining equations13d, which
in turn implies

q1
s0dstd + q2

s0dstd = 1, s16d

q1
sndstd + q2

sndstd = 0 for n ù 1.

Inserting the ansatzs15d into the master equationss8d and
s9d, using the Fokker-Planck equations14d for the phase, and
considering the coefficients of the different derivatives
]n/]fnPsf ,td eventually leads toscf. Appendix Ad the fol-
lowing equations forqsnd=fq1

snd ,q2
sndg:

q̇s0d = M tfqs0dg, s17d

q̇s1d = M tfqs1d + ct
s1dqs0dg − 2pJt

infqs0dg + vs·dqs0d, s18d

q̇s2d = M tfqs2d + ct
s1dqs1d + ct

s2dqs0dg

− 2pJt
infqs1d + sct

s1d − pdqs0dg + vs·dqs1d − Deffs·dqs0d.

s19d

The operator

Jt
inf·g = SJt

2→1f·g

0
D

accounts for the influx into state 1 and we introduced

ct
s1dst8d =E

t8

t

dtvstd,

ct
s2dst8d = −E

t8

t

dtDeffstd + vstdE
t8

t

dtst − tdvstd.

qs0d in Eq. s17d shows the same dynamics asp in the
two-state system without phases1d ands2d, which one would
also expect as this term corresponds to an equipartition of
phasesPsf ,td=const in the expansions15d. The higher-
order termsqsnd are corrections which emerge due to the fact
that we are considering a nonequipartition of phases result-
ing in drift and diffusion.

Interestingly, if the action of the flux operators on the
probabilities is local in time, i.e., in the Markovian case, the
terms containing thect

sid are zero, asct
sidstd=0, and therefore

the dynamics of theqsid considerably simplifies.
By summing up both components of the vectorial Eqs.

s18d ands19d, using the normalization conditions16d and the
fact thatsM td1+sM td2=0, we arrive at

vstd = 2pJt
2→1fqs0dgstd, s20d

Deffstd = 2pJt
2→1f− qs1d + sp − ct

s1ddqs0dgstd

= pvstd + 2pJt
2→1f− qs1d − ct

s1dqs0dgstd. s21d

The asymptotic mean phase velocityv̄ and the asymptotic

effective phase diffusion constantD̄eff can then be deter-
mined from the asymptoticscyclostationaryd solutions of
Eqs. s17d and s18d. Therefore, the calculation of the
asymptotic effective diffusion constant is reduced to the so-
lution of a cyclostationary problem, which in general is sim-
pler than solving the whole nonstationary problems8d and
s9d with some initial conditions and then taking the
asymptotic limit in Eq.s7d.

In the following, the mean phase velocity and effective
phase diffusion constant will be considered for two different
models, namely a Markovian modelf22g, which approxi-
mates bistable systems and a non-Markovian modelf29g,
which serves as an approximate description for excitable sys-
tems. For the dichotomically driven Markovian case, the
mean phase velocity and effective phase diffusion constant
can be explicitly calculated, while for the non-Markovian
case solutions can only be obtained numerically.

IV. A MARKOVIAN TWO-STATE MODEL

We consider now a Markovian two-state system with pe-
riodically modulated ratesg2std andg1std. Its flux operators
J1→2 andJ2→1 are given by

Jt
1→2fpgstd = g1stdp1std andJt

2→1fpgstd = g2stdp2std.

In this Markovian case, the equations, which govern the evo-
lution of qsidstd, greatly simplify due to the fact thatct

sidstd
=0. Equationss20d and s21d reduce to

vstd = 2pg2stdq2
s0dstd
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Deffstd = 2p2g2stdq2
s0dstd − 2pg2stdq2

s1dstd.

The equations forq2
s0dstd andq2

s1dstd are given by

q̇2
s0dstd = g1stdq1

s0dstd − g2stdq2
s0dstd, s22d

q̇2
s1dstd = g1stdq1

s1dstd − g2stdq2
s1dstd + vstdq2

s0dstd.

s23d

Equationss22d ands23d can be readily solved by the method
of variation of constants, usingq1

s0dstd=1−q2
s0dstd and q1

s1dstd
=−q2

s1dstd fcf. Eq. s16dg. The asymptotic periodic solutions
eventually read

q2
s0dstd =

E
0

T

dtg1st − tdexpf− sst,tdg

1 − expf− ssT,tdg
, s24d

q2
s1dstd =

E
0

T

dtvst − tdq2
s0dst − tdexpf− sst,tdg

1 − expf− ssT,tdg
, s25d

where sst ,tdªet−t
t dt8fg1st8d+g2st8dg. Note thatssT,td no

longer depends ont.
For a dichotomic symmetric driving with periodT

=2p /v,

g1std =5r1 if t P FnT,Sn +
1

2
DTD

r2 if t P FSn +
1

2
DT,sn + 1dTD 6

and vice versa forg2std, Eqs. s24d and s25d can be readily
evaluated leading after some cumbersome algebra to the
mean phase velocity and effective phase diffusion constant

v̄ = v0 + aV tanhR s26d

and

D̄eff = pv0F1

2
+ aS1

2
+ cosh−2 RDG

+ paVF− 1 +aS1

2
cosh−2 R+ 1DG tanhR, s27d

where we have introduced the mean phase velocity without
driving,

v0 ª
2p

1
r1

+ 1
r2

,

a quantifier for the driving strength,

a =
sr1 − r2d2

sr1 + r2d2 ,

and some ratio between inner time scale and driving fre-
quency,

R=
psr1 + r2d

2V
.

Without signal, i.e.,a=0, Eq. s27d reduces toD̄eff=pv0
,

which agrees with the result inf30g, D̄eff=s2pd2/2skt2l−ktl2d/ktl3.
Next we consider the small and large noise limits of the

phase velocityv̄ and phase diffusion constantD̄eff for the
case of Arrhenius ratesr1/2=r0 expf−sDU±Ad /Dg. In this
case,a=tanh2sA/Dd.

If for a fixed driving frequency the noise level is suffi-
ciently small such thatR!1, Eqs.s26d and s27d reduce to

v̄ < v0 + aVR=
p

2
sr1 + r2d <

p

2
r2,

D̄eff < pv0S1

2
+

3

2
aD + paVRS− 1 +

3

2
aD

=
p2

4
sr1 + r2d <

p2

4
r2,

where in the last step we used the fact thatr2 dominatesr1
for small noise levels. Therefore, at the level of phase veloc-
ity and phase diffusion, the process behaves like a process
without driving whose rates are both equal tor2/2.

On the other hand, if the noise level is large and the driv-
ing frequency is small compared tor0 such thatR@1, we get

v̄ < v0 + aV = 2p
r1r2

r1 + r2
+ V

sr1 − r2d2

sr1 + r2d2 ,

D̄eff <
p

2
v0s1 + ad + paVs− 1 +ad

= 2p2r1r2sr1
2 + r2

2d
sr1 + r2d3 − 4pV

sr1 − r2d2

sr1 + r2d4 .

The first terms in these expressions correspond to a process
without driving with one rate equal tor1 and the other equal
to r2, while the second terms are corrections which vanish
for vanishing driving frequency.

Between these regions, we have a competing behavior. If
for a fixed driving amplitudeA, the noise strengthD is suf-
ficiently small, such thata<1 and v0<0, and simulta-
neously, for a fixed driving frequencyV, D is sufficiently
large such thatR@1, i.e., tanhR<1, we have

v̄ < V,

D̄eff < 0,

i.e., frequency and phase locking occur.
Having calculated the effective diffusion coefficient and

the mean phase velocity, we can evaluate the Péclet number

Peª
2pv̄

D̄eff

, s28d

which is a measure of the phase coherence.
In Fig. 1, the theoretical resultss26d–s28d, are compared

to simulations of the driven two-state system. To compute
these results, we have modified an algorithm presented in
f34g taking into account that the transition rates are piece-
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wise constant in time due to the dichotomic driving. Let us
assume we start at timet in state 1 and the input defines the
rate to have the valuer1. Then we draw a random numbert
according to the corresponding waiting time distribution
wr1

std=r1 exps−r1td. If t+t is smaller than the timets of the
next switching of the input, we set the running time tot+t
and perform the transition to the second state of the system.
This state 2 will be left with rater2 and we proceed accord-
ingly ssee Fig.2d. On the contrary, if during the interval
ft ,t+tg a switching of the input occurs, we set the running
time equal to the switching timets but remain in state 1.
After switching of the input, the rate for leaving state 1 is
now r2 and we proceed by drawing a new waiting time ac-
cording to the new densitywr2

std=r2 exps−r2td.
The Péclet number shows a maximum as a function of

noise strength, indicating stochastic resonancesFig. 3d.For a
strong driving, it varies over several orders of magnitude
with varying noise strengthD. Interestingly, the Péclet num-
ber shows also a nonmonotonic behavior as a function of

FIG. 1. Mean phase velocityv stopd, effective phase diffusion
constantDeff smiddled, and Péclet number Pesbottomd of the Mar-
kovian model for different values of the driving amplitude. Symbols
are simulation data of the two-state system, lines according to Eqs.
s26d–s28d, respectively. Other parameters:r0=1, DU=0.25, andV
=0.001p. The deviation between theory and simulations in the Pé-
clet number for low noise intensities is due to limited simulation
time.

FIG. 2. Péclet number Pe of the Markovian model as a function
of driving frequencyV for different noise values showing a “bona
fide” resonance.A=0.2, other parameters as in Fig. 1. The inset
shows the driving frequencyssolid lined at which the Péclet number
attains its maximum and the intrinsic frequencyv0 without driving
sA=0d sdashed lined as a function of noise strength.

FIG. 3. Mean phase velocityv̄ stop, insetd, effective phase dif-

fusion constantD̄eff stopd, and Péclet number Pesbottomd of the
non-Markovian model for different values of the driving frequency
V. Symbols are simulation data of the two-state system, lines ac-
cording to numerical evaluation of the theory. Other parameters:
T=2800,r0=0.0044,DU=5.6310−5, andA=5.0310−5.
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driving frequency for a fixed noise level, i.e., using this num-
ber as a measure of the quality of the response to the external
signal, we discover a “bona fide“ resonance.

V. EXCITABLE SYSTEMS

In this section, we consider the phase velocity and diffu-
sion of a non-Markovian modelf29g. This two-state model
mimics the dynamics of an excitable system by dividing it
into an excitation step and the evolution along the excitation
loop. Its dynamics is given by

ṗ1std = gstdp2std −E
t0

t

dtwst − tdgstdp2std, s29d

ṗ2std = − gstdp2std +E
t0

t

dtwst − tdgstdp2std, s30d

with initial conditions

p1st0d = 0 andp2st0d = 1. s31d

State 2 represents the rest state, in which we start at initial
time t0. From there, the system is excited due to noise and
the external periodic subthreshold signal, leading a rate pro-
cess with rategstd, which depends periodically on time. This
Markovian excitation step is described by

Jt
2→1fpgstd = gstdp2std. s32d

State 1 accounts for the motion on the excitation loop on
which the system spends a time distributed according to the
waiting time distributionwstd, which is assumed not to de-
pend on the weak external driving. The flux from state 1
back to state 2 is then expressed in terms of the flux from
state 2 to state 1 at prior timest betweent0 to t gstdp2std,
which renders the description non-Markovian, leading to the
flux operator

Jt
1→2fpgstd =E

t0

t

dtwst − tdgstdp2std. s33d

Note that this operator depends explicitly on the initial time
t0.

To calculate the asymptotic periodic solution, it will be
useful to first formally integrate Eqs.s29d and s30d, taking
into account the initial conditionss31d and then taking the
initial time t0 to −`. The resulting equations are

p1std =E
0

`

dtzstdgst − tdp2st − td, s34d

p2std = 1 −E
0

`

dtzstdgst − tdp2st − td, s35d

wherezstd=1−e0
tdt8wst8d is the probability to spend a time

longer thant on the excitation loop. By differentiating these
equations with respect tot, one recovers the original Eqs.
s29d and s30d in the limit t0→−` f35g.

If we take into account the phase, Eq.s34d has to be
replaced by

ps1,kdstd =E
0

`

dtzstdgst − tdps2,k−1dst − td. s36d

We also have to take care of the flux operatorJt
1→2 which in

the asymptotic case is given byfcf. Eq. s33dg

Jt
1→2fpgstd =E

0

`

dtwstdgst − tdp2st − td. s37d

In the following, we assume a fixed waiting timeT on the
excitation loop, i.e.,wstd=dsT−td and zstd=usT−td. Such
an assumption is justified in the low noise limit for, e.g.,
FitzHugh-Nagumo modelsscf. Fig. 6d. In this case, Eq.s37d
simplifies to

Jt
1→2fpgstd = gst − Tdp2st − Td. s38d

Then, according to Eqs.s20d ands21d, the time-dependent
phase velocityvstd and effective phase diffusion constant
Deffstd are given by

vstd = 2pgstdq2
s0dstd, s39d

Deffstd = − 2pgstdq2
s1dstd + 2p2gstdq2

s0dstd, s40d

which are the same expressions as in the Markovian case, as
the flux operatorJt

2→1 is the same. However, the equations
governing theqsid are different. Following the same proce-
dure we used to treat Eqs.s8d ands9d, Eq.s36d, together with
normalization, the conditions16d leads to

1 − q2
s0dstd =E

0

T

dtgst − tdq2
s0dst − td s41d

− q2
s1dstd =E

0

T

dtgst − tdq2
s1dst − td

+E
0

T

dtgst − tdq2
s0dst − tdSE

0

t

dt8vst − t8d − 2pD .

s42d

The periodic solutions of Eqs.s41d and s42d can be numeri-
cally obtained in Fourier space using a linear solver like
LAPACK.

To investigate the role of noise on the synchronization in
an excitable system, we choose an Arrhenius-type excitation
rate for the transition from the rest state 2 onto the excitation
loop 1. We further assume that the external driving acts as a
modulation of the potential barrier. Again we consider a di-
chotomic periodic driving, i.e., the excitation rategstd peri-
odically switches between the two valuesr1=r0 expf−sDU
−Ad /Dg and r2=r0 expf−sDU+Ad /Dg.

The resulting phase velocity, effective phase diffusion,
and Péclet number as a function of noise strengthD are
shown in Fig. 3. As in the case of bistable systems, we ob-
serve frequency and phase locking, however there exist pre-
ferred driving frequencies for which high synchronization is
achieved and other frequencies which show no synchroniza-
tion at all.
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The Péclet number shows a local maximum at a finite
noise strength. Contrary to the bistable situation, however,
the phase diffusion constant decreases again and the Péclet
number therefore increases for large noise levels. This be-
havior is originated in the fixed timeT on the excitation loop.
Taking into account the high rate and therefore small waiting
time and variance of the excitation step for high noise levels,
this leads to a low variance of the spiking, which implies a
low diffusion of the phase. We mention that this low phase
diffusion does not imply synchronization since the frequen-
cies are not locked. Also we note that in real excitable sys-
tems the behavior differs. For higher noise levels, the time
spent on the excitation loop will have a variance in these
systems which yields an increasing phase diffusion with
growing noise.

As seen in Fig. 3, the synchronization behavior strongly
depends on the driving frequency. To further analyze this
effect, we have plotted in Fig. 4 the mean phase velocity,
phase diffusion coefficient, and the Péclet number as a func-
tion of the driving frequency. They show a complex se-
quence of different locking regions between the driving and
the system’s responsef36,37g, represented by shaded re-
gions. In these locking regions, the effective phase diffusion
is smallssee Fig. 5d. We mention that the maximal frequency
of the excitable system isv̄max=2p /T, whereT is the time
on the excitation loop. There cannot be 1:1 synchronization
for V.v̄max.

Let us for a moment assume the extreme case where one
excitation rater1 is infinity and the otherr2 is zero. Then the
system remains in the rest state as long as the input causes
the vanishing excitation rate. After the input changes, the
system immediately starts with the excitation loop, where it
stays at timeT. For a 1:1 locking, this timeT must be larger
than half the period but smaller than the full period 2p /V of
the driving. Otherwise, if the duration of the excitation loop
would be smaller than half the period, the system returns to
the rest state where it immediately starts a new excitation. As
a consequence, 1:n locking, where the output frequency isn
times higher than the input frequency, occurs if the period of
the driving is betweensn−1/2dT andnT.

The opposite case where a fast input locks a slow output
occurs if multiple periods of the input fit into the excitation
time. During the excitation, the system does not respond to
the changes of the input. If the input has the phase with long
waiting time after the system has completed the excitation
loop, it has to wait until the input changes to the phase with
the small waiting time, leading to ann:1 synchronization
wheren is the number of signal periods which fit into the
excitation timeT.

However, if the system finds the high excitation rate after
excursion, it immediately starts a new excitation loop and
repeats these until it will find the phase with long waiting
times. This yields ann:m frequency locking withn.m.
Note that there are non:m locking modes withn,m except
the 1:m modes described above.

Realistic noise-dependent time scales will weaken the ex-
treme behavior of the situation considered above. There are
two competing effects: increasing the noise increasesr1 as
well as r2 while decreasing the noise increases the ratio be-
tween r1 and r2 and therefore the effect of the driving.

Hence, we find synchronization in a finite window of noise
intensities where the two activation times enclose the timeT
on the excitation loop,

1

r1
! T !

1

r2
. s43d

We point out that this latter time plays the essential role
within the synchronization process, i.e., this time scale and
the period of the external drive have to be tuned appropri-
ately to get phase synchronization. Noise as well as the am-
plitude of driving define the two excitation rates and have to
be chosen such that Eq.s43d is optimally fulfilled, i.e., that
the input acts as much as possible as an on-off switch on the
excitation process. A deviation from this extremal behavior
leads to a narrowing of the driving frequency windows ame-
nable to frequency locking and a shift of these windows to
lower frequencies.

FIG. 4. Mean phase velocityv̄ stopd, effective phase diffusion

constantD̄eff smiddled, and Péclet number Pesbottomd of the non-
Markovian model as a function of driving frequencyV for D
=0.000 01. The selected shaded regions are a guide for the eye to
show that regions of frequency synchronization are accompanied
with a small effective phase diffusion and therefore with a high
Péclet number. Other parameters:T=2800, r0=0.0044, DU=5.6
310−5, andA=5.0310−5.
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Inequality s43d allows for an estimation of noise levels,
for which one can expect synchronization. If, in particular,
we specify this inequality by 1/r1,T/4 and 1/r2.4T, the
parameters used in Fig. 5 lead to a noise range fromD<5
310−6 to D<3310−5, which coincides with the range of
noise levels for which phase synchronization is actually ob-
served.

Finally, we compare the theory to a dynamical system
with excitable dynamics, namely the FHN modelf38,39g,

ẋ = x − x3 − y + Î2Djstd,

ẏ = efx + a0 − a1y − sstdg. s44d

This system is driven by a dichotomic periodic signalsstd
with values ±A, whereA=0.015. Settinga0=0.405 anda1
=0.5, the system is in the excitable regime for both values of
the signal, i.e., the signal is a subthreshold signal. We further

consider a strong timescale separatione=0.001 as well as a
small noise levelD=10−5. The phase of the system is defined
to increase by 2p each time a spike is generated. From simu-
lations of the interspike interval distributionssee Fig. 6d for
constant signal ±A, we find the corresponding parameters of
the two-state model to beT<2620, r1<0.0087, andr2
<8.3310−8.

The results for the phase velocityv̄ and effective phase

diffusion constantD̄eff for the FHN systemfnumerical simu-
lation of Eqs.s44dg and the theorys39d ands40d are shown in
Fig. 7. They show a good qualitative agreement over a large
range of driving frequencies. The deviation for larger driving
frequencies is due to the fact that, in contrast to the assump-
tions of our two-state model, the timeT spent on the excita-
tion loop depends if only weakly on the driving.

VI. CONCLUSIONS

We have derived a general theory to calculate the
asymptotic effective phase velocity and phase diffusion con-
stant in periodically driven two-state systems. This theory
was applied to two different two-state models, one with Mar-
kovian dynamics representing bistable systems and the other
with non-Markovian dynamics, modeling excitability.

In the Markovian case, analytical results have been calcu-
lated for dichotomic driving with arbitrary driving ampli-
tudes. We found phase synchronization for optimal noise in-
tensities if Arrhenius-type rates for the transitions between
the states are assumed. The mean frequency of the system is
locked to the frequency of the external stimulus and the ef-
fective phase diffusion coefficient becomes vanishingly
small. The Péclet number, however, shows a maximum not

FIG. 5. Effective phase diffusion constantD̄eff of the non-
Markovian model, as a function of driving frequencyV and noise
level D. The black lines show regions of frequency lockings1
−edV,nv̄, s1+edV, e=0.01 with sfrom left to rightd n
=3,2,1,12. These regions of frequency locking coincide with low
phase diffusion. Other parameters as in Figs. 3 and 4.

FIG. 6. Interspike interval distribution of the FHN systems44d
with constant signalsstd=0.04 for a low noise levelD=10−5 and
strong time scale separatione=0.001. Other parameters, see text.

FIG. 7. Comparison between theory and FHN system for mean

phase velocityv̄ stopd and effective phase diffusion constantD̄eff

sbottomd as a function of driving frequency. Other parameters, see
text.
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only as a function of noise strength but also as a function of
driving frequency, i.e., a “bona fide” resonance. Frequency
locking occurs as long as the driving frequency is smaller
than the maximal transition rates which are attained for large
noise.

In the non-Markovian case, the phase velocity, phase dif-
fusion coefficient, and Péclet number also prove phase syn-
chronization between input and output. However, the picture
differs from the previous case showing a sequence of
frequency-locking modes. These different regions of locking
are accompanied with low phase diffusion. The main condi-
tions for locking are expressed by relations between the driv-
ing frequencyV and the timeT spend on the excitation loop.
The noise-dependent and periodically modulated transition
rates from the rest to the excited state act as a switch for the
spiking. 1:n locking, i.e., a slow input and fast output, oc-
curs for a certain window of noise intensities if, in a first
approximation, the driving frequency is between 2p / fsn
−1/2dTg and 2p / snTd, respectively. For the opposite case of
fast input and slow output, we find 1:n but alsom:n, m
,n frequency locking. The theoretical results for the non-
Markovian model of excitable systems agree well with simu-
lations of a FitzHugh-Nagumo system.
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APPENDIX A

Our aim is to express the phase distributionPsf−Df ,t
−td in terms ofPsf ,td and its derivatives with respect tof,
]n/]fnPsf ,td. To this end, we start by expandingPsf
−Df ,t−td in a Taylor series aroundf and t,

Psf − Df,t − td = o
n=0

`

o
m=0

`
1

n!m!
S ]n

]fnD
3S ]m

]tm
DPsf,tds− Dfdns− tdm.

To process the time derivatives, we use the Fokker-Planck
equations14d

]

]t
Psf,td =

]

]f
S− vstd + Deffstd

]

]f
DPsf,td,

taking care of the explicit time dependence ofvstd and
Deffstd, which leads to

Psf − Df,t − td = Psf,td

− FDf + o
m=1

`
s− tdm

m!

]m−1vstd
]tm−1 G ]

]f
Psf,td

+ F1

2
Df2 + o

m=1

`
s− tdm

m!

]m−1Deffstd
]tm−1

+ vstdo
m=2

`
s− tdm

msm− 2d!
]m−2vstd

]tm−2

+ Dfo
m=1

`
s− tdm

m!

]m−1vstd
]tm−1 G ]2

]f2Psf,td + Os3d,

where Os3d denotes third or higher derivatives ofPsf ,td
with respect tof. The sums containing the derivatives of
vstd andDeffstd can be further evaluated, leading to

o
m=1

`
s− tdm

m!

]m−1vstd
]tm−1 = − o

m=0

`
1

m!

]mvstd
]tm

E
0

t

dt8s− t8dm

= −E
0

t

dt8vst − t8d

and analogously

o
m=1

`
s− tdm

m!

]m−1Deffstd
]tm−1 = −E

0

t

dt8Deffst − t8d

and

o
m=2

`
s− tdm

msm− 2d!
]m−2vstd

]tm−2 =E
0

t

dt8t8vst − t8d.

Thus we eventually arrive at

Psf − Df,t − td = Psf,td + fct
s1dst − td − Dfg

]

]f
Psf,td

+ F1

2
sDfd2 − Dfct

s1dst − td + ct
s2dst − tdG

3
]2

]f2Psf,td + Os3d,

where

ct
s1dst8d =E

t8

t

dtvstd,

ct
s2dst8d = −E

t8

t

dtDeffstd + vstdE
t8

t

dtst − tdvstd.

Next we insert our ansatzs15d

pkstd = o
n=0

`

qsndstd
]n

]fnuPsf,tduf=2pk

into the dynamical equationss8d and s9d,

ṗs1,kd = Jt
2→1fpk−1g − Jt

1→2fpkg, sA1d

ṗs2,kd = Jt
1→2fpkg − Jt

2→1fpkg. sA2d

Using again the Fokker-Planck equations14d, the left-hand
side of Eqs.sA1d and sA2d is given by

PHASE VELOCITY AND PHASE DIFFUSION IN… PHYSICAL REVIEW E 71, 031112s2005d

031112-9



d

dt
pkstd = o

n=0

` S d

dt
qsndstdD ]n

]fnPsf,td

+ o
n=0

`

qsndstd
]n+1

]fn+1S− vstd + Deffstd
]

]f
DPsf,td.

The different terms on the right-hand side of Eqs.sA1d and
sA2d read

Jt
i→ jfpk−1g

= o
n

Jt
i→ jfqsndgS ]n

]fn − 2p
]n+1

]fn+1

+ 2p2 ]n+2

]fn+2DPsf,td

+ Jt
i→ jfct

s1dqsndgS ]n+1

]fn+1 − 2p
]n+2

]fn+2DPsf,td

+ Jt
i→ jfct

s2dqsndg
]n+2

]fn+2Psf,td + Osn + 3d,

Jt
i→ jfpkg = o

n

Jt
i→ jfqsndg

]n

]fnPsf,td

+ Jt
i→ jfct

s1dqsndg
]n+1

]fn+1Psf,td

+ Jt
i→ jfct

s2dqsndg
]n+2

]fn+2Psf,td + Osn + 3d.

Equating now the coefficients ofPsf ,td, s] /]fdPsf ,td
and s]2/]f2dPsf ,td finally leads to Eqs.s17d–s19d.
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